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1 Introduction

This paper is concerned with the interaction and behaviour of prediction and financial

markets around political events. That political risk affects asset prices is an established

concept. Similarly, the information content and superior forecasting ability of political

prediction markets is a settled matter in the literature. Surely the ‘wisdom of the crowds’

from both these markets concerning political risk can be used to derive pricing relation-

ships between these two very different markets? There are very large bodies of literature

concerning both the financial market implication of political risk and separately, predic-

tion and election markets. However there is virtually no overlap between these fields,

despite the very obvious, at least to this author, links between them. There are certainly

no general pricing theories or models linking the two markets. This paper is an attempt

to bridge that gap.

There are many studies in the literature that study single elections or other political

events. However, studies that consider both political and financial markets, or multiple

events, are few and far between. The papers that do exist typically only consider empirical

and not economically derived relationships. There is a major gap in the literature for

economically derived pricing model of prediction and financial markets that apply in a

general setting. One working paper, which shares some methodological aspects with this

one, Auld (2022), attempts to fill the void in the very particular situation of the hours

directly after an election. But, the question remains, how do markets behave on a longer

term, during the weeks and months preceding an election? This is the topic of this study.

The successful election night model of Auld (2022) used a key assumption. This was

that asset prices are uniquely determined by the probability of a binary political outcome.

Combined with conditions consistent with market efficiency and risk neutrality, this led

to the there being only a single stochastic trend driving prices in all markets and the

presence of cointegration. However, it is difficult to argue that, outside of the unique

hours directly following election, financial prices do not respond to the ebb and flow of

other non-political information. One implication of the key assumption in Auld (2022) is

that the conditional expectations of asset prices given binary political outcomes is fixed

in time. This does not apply on a longer term basis. Conditional expectations of prices

will change with the arrival of non-political information. Instead, the key assumption in

this paper is that the difference, (or ratio), of the two conditional expectations is fixed.

This is equivalent to assuming that the outcome of the elections has a fixed effect on

the prospects of a company or financial asset. The resulting model yields a relationship

between asset price returns and first differences in betting markets. This is no great

surprise. A small number of studies have studied this relationship, albeit only for single

events and only empirically. However, our model is based on an assumption combined
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with common pricing restrictions from the asset pricing literature and applies in a general

setting. The residue of returns beyond that driven by the political factor is allowed

to vary. This is due to the existence of other economic and commercial information

beyond that related to the political event. The distribution of returns is effectively

partitioned into a political factor and a non-political component. The theory is quite

naturally extended to equities, by modelling the non-political part of the returns with

the ubiquitous 5 Fama–French factors, Fama and French (2015). The result is a 6-factor

augmented Fama–French characteristic factor model, with an additional factor being

described by the betting markets and related to political risk. We test the model on six

elections. Strong support is found for four, mixed results for one, and no evidence for

a single election (the 2017 UK general election). The conclusion for the latter event is

that this election was not meaningful for stock prices. We also find evidence that betting

markets become more informative as the event approaches. This idea already has some

support in the literature. An exponential weighting scheme, where observations closer

to the election are weighted more heavily, improves and sharpens our results. Finally

an inspection of the political factor loadings reveals some pleasing relationships between

firm characteristics and political sensitivity. Internationalisation of revenue was a key

explanatory factor. This is consistent with the hypothesis that firms that have a greater

share of off-shore sales are more able to diversify domestic political risks. We also find

geographical location and nationalisation risk, under an opposition win, also explain

differences in political sensitivity.

The question of whether or not the identified political factor is a risk factor, and the

ultimate purpose of this study, requires comment. What this study is most definitely not

is an attempt to add yet another questionable risk factor to the ‘factor zoo’ of Cochrane

(2011). We will make no claims about the existence or otherwise of a political return

premia. There is an economic argument that a premium should be earned by holding

stocks with exposure to an upcoming election. The result is effectively a coin toss and

investors should be rewarded for taking such a risk. However, we would need data from a

far larger sample of events than the six studied here to generate significance (and boosting

portfolio returns by taking such coin flip type risks every couple of years when there is an

election is probably not a very sensible investment approach). The risk factor literature

is concerned with explaining the cross section of returns whereas we are concerned with

explaining the variance of returns, during the campaign period. The implications of our

work for portfolio choice are not related to increasing expected returns, but to reducing

volatility (elections are very volatile times). This can be achieved through the hedging

of the new, albeit temporary, political factor that is unrelated to the other common risk

factors in the literature. Of course it also provides a way for investment managers to
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express a view about an election, by increasing exposure to the said political factor, if

they so wish.

The main contribution of this paper is the presentation of a general pricing model

linking prediction markets with financial asset prices. It applies both for political events

as well as any prediction market whereby the underlying event has an effect (through

the conditional expectation) on asset prices. Secondly we discover firm characteristics

that drive political sensitivity which both confirms and extends the existing literature on

this topic. Finally, the discovery of a significant, albeit temporary, political equity factor

contributes to the literature on equity factor modelling and portfolio choice.

The remainder of the paper proceeds as follows: Section 2 builds the pricing model

using the assumption of a fixed difference in conditional expectations of financial prices

given the outcome of a binary political event. The empirical and testing framework is

outlined in section 3. Section 4 tests the model on several recent elections and section 5

concludes our study. The paper includes several appendices including appendix D which

presents all tables of results.

2 Literature review

The financial market implications of elections and political risk are well documented.

Changes in the composition of government naturally brings about changes in policy.

There are many studies that demonstrate either the effects on financial markets of election

campaign periods or results. Three large multi-country studies demonstrate changes of

asset price volatility around elections. Bia lkowski et al. (2008) studies 134 elections in 27

OECD countries from 1980 to 2004. They find that the relevant national stock exchange

index volatility can easily double during the week after the election. Apparently ‘investors

are surprised by the election outcome’. Kelly et al. (2016) find that this uncertainty is

priced in the options market. They analyse data from 1990-2012 for options prices on

national indices for a sample of 20 countries finding that prices and implied volatility

are higher for options that span elections. They also document spillover effects from

the election country to other international markets. Pantzalis et al. (2000) is another

large multi country study. This paper finds significantly positive returns two weeks prior

to election dates for elections in 33 countries between 1974 and 1995. The conclusion

is that as election uncertainty is resolved, prices respond positively. Two later papers

come to the opposite conclusion for US presidential elections. Goodell and Bodey (2012)

consider how the Graham price to earnings (P/E) of the S&P500 index stocks, as well as a

measure of consumer sentiment, changes during the campaign periods of US presidential

elections. They find the measure worsens as the winner becomes clearer, according to

the probability seen on the Iowa market (that is, as uncertainty reduces). They conclude
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that for the US, ‘during presidential election seasons, the market discovers its distaste

for the economic policies of the likely winner’. The analysis is extended in Goodell

and Vähämaa (2013). They find the VIX is positively associated with positive changes

in the probability of the winner. This ‘indicates that the presidential election process

engenders market anxiety as investors form and revise their expectations regarding future

macroeconomic policy.’

There are also studies in the literature that demonstrate association between election

polls and asset prices. Gemmill (1992) considers the campaign period of the 1987 UK

general election. In the paper the author derives the probability of a Conservative party

win from polling data. They find that the ‘FTSE100 index was very closely related to the

probability of a Conservative win’. Further, in the final two weeks before the voteshare

options prices showed large increases in implied volatility. This was particularly the

case for nationalisation targets (of the opposition Labour party). Brander (1991) and

Bernhard and Leblang (2006) study the 1988 Canadian election. This was shortly after

the implementation of the Canada-US FTA which was opposed by the opposition Liberal

party.1 Prices on the Toronto Stock Exchange were found to be significantly positively

related to polling numbers for the Conservative party during the campaign period.

There is a plethora of research on the accuracy of prediction, and election markets.

For a recent review of prediction markets see Horn et al. (2014) and for political markets

see Graefe (2016). Studies, many of which are based on the Iowa and UBC markets2,

have demonstrated the remarkable accuracy of forecasts from election markets. There

is a consensus in the literature that political markets outperform other methods includ-

ing polling and expert predictions. Two early papers by Forsythe et al. demonstrate

the outperformance of prediction markets when comparing final prices with final polling

numbers (despite the presence of judgement bias amongst traders). Forsythe et al. (1992)

finds that ‘the [Iowa] market worked extremely well, dominating opinion polls’ for the

1988 US presidential election. Different constituent groups apparently tended to place

bets on their preferred candidates, indicating judgement bias. However, the paper con-

cludes that prices are set by the marginal trader, removing this bias in prices. Oliven

(2004) also considers whether the Iowa market is skewed by biased participants. They

conclude that market-making traders are more rational than price takers, the implication

being that arbitrageurs are indeed making prices efficient. The analysis and conclusions

are repeated for the 1993 Canadian federal election in Forsythe et al. (1995). Both these

studies focus on shorter-term market predictions. A later study, Joyce E. Berg and Rietz

1Following the inclusion of Mexico in 1994 the CUSFTA became the North American Free Trade
Association in 1994.

2Modern examples of electronic election markets include University of Iowa’s Iowa Electronic Markets,
introduced for the 1988 US presidential election, the University of British Columbia’s (UBC) Election
Stock Market (now superseded by the Sauder School of Business Prediction Markets) and the Betfair
Exchange, prices for which are used in this paper.
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(2008) compares vote share prices from the Iowa market with 964 polls over the five US

presidential elections from 1988 to 2004. They find that the prediction market is closer

than the polls 74% of the time. Further ‘the market significantly outperforms the polls

in every election when forecasting more than 100 days in advance’. There is evidence

that election markets are not only accurate at times close to a vote but have superior

explanatory power months from an election.

The literature is clear that both election markets are powerful tools to forecast elec-

tions and that the outcome of elections have effects on asset prices. It naturally follows

that prediction and financial markets should be related in some way. There are many

event studies in the literature that consider elections, but they typically only consider

either financial markets, or political markets and rarely both, and when they do they

typically only uncover an empirical relationship and are not based on economic theory.

The few studies in the literature that consider both types of market are discussed below.

There are two studies in the literature that directly relate political prediction market

prices to the residuals of CAPM models. Both consider only the 2014 Scottish inde-

pendence referendum. Acker and Duck (2015) find that the residuals of an estimated

CAPM model are significantly positively related to a weighted sum of the Betfair ex-

change odds for ‘No’. Similarly Darby et al. (2019) study equities listed on the LSE that

were headquartered in Scotland. They find that uncertainty betas help predict cross-

sectional returns. Hanna et al. (2021) find that increases in the odds for leave on the

Betfair exchange precede falls in the prices of UK equities and the pound in the following

5 minutes. Spillover effects to EU equities were also observed.

We find very few examples of economically derived relationships between prediction

markets and asset prices in the literature. These are, firstly, Auld and Linton (2019) and

the associated corrigendum Auld and Linton (2023). This paper examines the behaviour

of the pound and the betting markets on the night of Brexit. Using a Bayesian electoral

forecasting model that updates throughout the night they conclude that both the betting

and pound markets were slow in reflecting the information contained in the referendum

results. Secondly, Auld (2022) builds a model of betting and financial markets restricted

to the very particular setting of the hours after an election. Finally, Manasse et al. (2020)

considers the months prior to the Brexit referendum. The authors build a simple portfolio

model for currencies. This implies that currencies are cointegrated with betting prices

for Brexit. Under risk neutrality they find a linear cointegrating relationship whereas

risk aversion leads to the presence of a non-linear term risk factor related to uncertainty.

Manasse et al. (2020) find that currency and Betfair data are consistent with their model.

However, we do not believe the assumptions behind their model are valid. For it to be

so, one would have to believe that the only determinant of the GBPUSD price in the

weeks and months preceding the Brexit vote is the result of that vote. We believe
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this is not plausible. News and information beyond that relating to the referendum,

including US economic releases, are likely to affect the British Pound and United States

Dollar exchange rate in the period under study. We believe a longer term VAR or factor

model, such as the one presented here, is more appropriate to describe the longer term

relationship between currency and betting market prices, in the run up to the Brexit

referendum.

Contrary to the existing literature, this paper presents a pricing model of political and

financial markets that is based on economic principles and applies to a general political

vote. We believe the fact that there are no similar studies or models presented in the

literature speaks to the contribution of this work.

3 Pricing model

We begin by outlining the scenario of the model. There exists a betting market which

is liquid and trades multiple times a day in the run up to a scheduled event. Contracts

are listed on the market relating to the outcome of a binary political event. Say E = 1

if this event occurs and E = 0 otherwise. The outcome of the election or event occurs

at time t = T . For t < T let PBt be the price of the contract that pays out £1 when

E = 1. There are N financial assets indexed i = 1, . . . , N whose prices are pit at time t.

For much of this section we consider only a single financial asset and then we label the

price pt. The unit time period (4t=1) is equal to one day.

The key assumption in this model is that there is a constant effect of the election on

the condition expectations of financial prices given the outcome of the event E.

CE – Constant effect of the event

We seek a condition that the outcome of a binary election or some other event has some

expected fixed effect on financial prices. As an example, ex-ante, the market could believe

Trump winning the 2016 Presidential election would have a 10% negative effect on the

stock price of the Mexican bank Inbursa, versus a Clinton win3. This would be equivalent

to

Et (INBURSAT |E = 1)

Et (INBURSAT |E = 0)
= 0.9 ∀ t < T. (3.1)

Similarly, for the duration of the election campaign, the market may have believed that

3Inbursa closed around 5.6% lower the day after Trump win, although it did initially trade significantly
lower.

7



the price would be 3 Pesos lower if Trump versus Clinton won4. This could be expressed

as

Et (INBURSAT |E = 1) − Et (INBURSAT |E = 0) = 3 ∀ t < T. (3.2)

In either case some function of the two conditional expectations is fixed for the time

period before the event, and not allowed to vary. Our model applies typically to a

relatively small period of time. As long as the stock price does not vary too much the

above two formulations of the CE assumptions will be approximately equivalent. Taking

logarithms of the first formulation would, for a general price pt, recover

log(Et (pT |E = 1)) − log(Et (pT |E = 0) = γ ∀ t < T.

To make the assumption operational we make a further approximation. Stocks typically

vary by much less than order 100% over a period of a few weeks. As such, log(pt) will

be approximately linear over the support of pt|E. So

log (Et(pT |E = i)) ≈ Et (log(pT )|E = i) ∀ t < T.

Thus if either of the above forms of the CE assumption for Imbursa hold (equations 3.1

and 3.2), the quantity

γt = Et (log(pT )|E = 1) − Et (log(pT )|E = 0) = γ

will be approximately fixed in time for t < T . This is the mathematical form that our

CE assumption takes.

The CE assumption will not hold for all assets all of the time. As an example,

consider the case of a UK based bank unexpectedly announcing the opening of European

operations during the Brexit referendum campaign. This may reduce the firm’s reliance

on cross-border regulations between the UK and the EU, reducing any negative effect

of a vote for Brexit. As such it would be reasonable to expect the magnitude of γ to

reduce for this bank over the announcement. Nonetheless this would be a fairly rare

and specific event. Other scenarios could be systematic and affect large numbers of

assets. For example, had the Brexit leave campaign unexpectedly announced that they

had settled upon a policy of remaining in the EU single market (‘softening’ any Brexit),

then one would expect the difference in conditional expectations to reduce. This would

4Inbursa was trading in the range 27–30 Pesos in the weeks prior to the election.
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create a structural break in the political sensitivities γ. The strength of this assumption

is a matter for debate. However, we believe for most assets and most elections it is fairly

weak.

Derivation

In what follows below we assume a single asset price with price pt at time t. rt =

log(pt/pt−1) = log(pt)− log(pt−1) = 4log(pt), the return of the asset on day t.

First we write down an equation linking the price of a financial asset today, and the

expected value in the future. This is

Et(log(pT )) = µTt + log(pt)

where

µTt = Et(log(pT )− log(pt)).

Simply put, the expected log price of the asset price at the point the election result

becomes known, Et(log(pT )), is the price today, pt, plus the expected return of the asset

µTt from t to T .5 This is of course equivalent to

log(pt) = −µTt + Et(log(pT ). (3.3)

The purpose of this equation is to link future expected prices with the price today.

Financial economics has many instances of such equations. These include the uncovered

interest parity (UIP) relation applied to currencies. Another example is the cash and

carry relationship linking the arbitrage relationship between forward or futures and spot

prices. The common feature of these relationships is that any changes in future expect-

ations of an asset’s price are immediately reflected in changes to today’s price.

The first difference of equation 3.3 recovers

rt = 4log(pt) = −4µTt +4Et(log(pT )). (3.4)

For notational convenience write

5For convenience we assume no dividends, coupons or other cash-flows.
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Eit = Et (pT |E = i) i = 1, 2

P it = Pft (E = i) i = 1, 2

γt = E1
t − E0

t .

where Pft (·) represents the probability of an event as evaluated by a representative investor

in the financial markets.

Next we expand the expectation of the log price using the total law of expectation.

Et(log(pT )) = P 1
t .E

1
t + P 0

t .E
0
t

= P 1
t .E

1
t + (1− P 1

t ).E0
t

= E0
t + (E1

t − E0
t ).P 1

t

= E0
t + γt.P

1
t

Taking first differences gives an expression for the second term of equation 3.4.

4Et(log(pT )) = 4E0
t + γt.P

1
t − γt−1.P 1

t−1

= 4E0
t + (γt−1 +4γt).P 1

t − γt−1.P 1
t−1

= 4E0
t + γt−1.(P

1
t − P 1

t−1) +4γt.P 1
t

= 4E0
t + γt−1.4P 1

t +4γt.P 1
t

Note that 4E0
t = 4E1

t and that this quantity is the change in the expected future log

price of the asset at time T , log(pT ), that is not related to the political event. Further,

our CE assumption is precisely that 4γt = 0 and γt = γ ∀ t. So CE ⇒

4Et(log(pT )) = 4E0
t + γ.4P 1

t (3.5)

for some fixed political sensitivity γ. Thus the CE assumption implies that the expecta-

tion of the log price from time t− 1 to t can be split up into a change not related to the

upcoming election (4Eit i = 1 or 2) and the change due to the political event (γ.4P 1
t ).

The latter term is simply a constant multiplied by the change in the financial market’s
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evaluation of the probability of E = 1, P 1
t . Assets that are expected to appreciate when

E = 1 have γ > 0 whereas expected depreciation results in γ < 0. The greater the

sensitivity to the political event the larger the magnitude of γ.

Weak market efficiency and risk neutral pricing in betting markets.

We now equate the probability of E = 1 as assessed by a representative investor in the

betting markets with that of beliefs in the prediction market,

Pft (E = 1) = PBt (E = 1),

where Pbt(·) is the probability of an event as evaluated by participants in the betting

market. This is a condition that is consistent with weak market efficiency.

Next, the condition of risk neutral pricing in betting markets with an effective discount

factor of unity6 implies that for a contract that pays out £1 when E = 1

PBt = PBt (E = 1).

Thus the additional restrictions of equal beliefs in the two markets and risk neutral

investors in betting markets ⇒

Pft (E = 1) = PBt.

Taking first differences and substituting into equation 3.5 ⇒

4Et(log(pT )) = 4E0
t + γ.4PBt. (3.6)

To recover an expression for the daily return of an asset we still need to consider the

change in the expected appreciation of the asset to the election result, 4µTt. This can

be achieved using the fact that market efficiency implies that returns have a martingale

difference property. First write

6Our model applies only to the campaign period of an election of a few weeks or months. Thus any
discount factor related to the payout of binary options that payout on the election result will be very
close to one.
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µTt = Et(log(pT )− log(pt))

= Et(log(
pT
pt

))

= Et(log(
pT
pT−1

.
pT−1
pT−2

. . . . .
pt+1

pt
))

= Et(log(
pT
pT−1

) + . . .+ log(
pt+1

pt
))

= Et(log(
pT
pT−1

)) + . . .+ Et(log(
pt+1

pt
)).

The final line uses the fact that the expectations are separable due to the martingale

difference property of returns. If we assume an expected constant rate of daily return for

the asset of µ then Et(log( pt+i
pt+i−1

)) = Et−1(log( pt+i
pt+i−1

)) = µ and

µTt = (T − t)× µ.

⇒

4µtT = µtT − µt−1T
= (T − t)µ− (T − t+ 1)µ

= −µ. (3.7)

Substituting equations 3.6 and 3.7 into equation 3.4 ⇒

rt = µ+4E0
t + γ.4PBt. (3.8)

This is linear equation linking changes in prices of betting market binary options and

financial market returns. Changes in the odds of E = 1 affect returns directly through

the factor loading γ. This is similar to the βs in the capital asset pricing model (CAPM).

Whereas β in the CAPM relates to the sensitivity of the asset to the single factor market

return, γ in our model represents the sensitivity to the political event.

Errors in market efficiency

We now consider what happens when beliefs in the betting and financial markets about

the probability of E = 1 diverge. This would be consistent with deviations of weak
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market efficiency. To do this we add an error εt to the condition linking beliefs in the

two markets,

Pft (E = 1) = PBt (E = 1) + εt = PBt + εt.

We assume that E(εt) = 0, so there are no systematic differences in beliefs, and εt is

weakly dependent so that errors in beliefs are transient. Equation 3.6 now becomes

4Et(log(pT )|εt, εt−1) = 4E0
t + γ.4PBt + γ.4εt

and equation 3.8 is varied to

rt = µ+4E0
t + γ.PBt + γ.4εt.

The factor model is now

rt = µ+ γ.4PBt + ζt

ζt = 4E0
t + γ.4εt.

If market efficiency generally holds, but with some transient fleeting errors between

beliefs about the probability of the political event, the residual error of the factor model

will be serially correlated.

Extension to multi-factor Fama–French model

We now consider a large portfolio of stocks, with returns rit, i = 1, . . . , N . The single

political factor model is

rit = µi + γi.4PBt + ζit (3.9)

ζit = 4E0
it

E(ζit) = 0

The error ζit is allowed, indeed expected, to be correlated across different stocks. Under

strict market efficiency it will be serially uncorrelated but fleeting deviations from effi-

ciency (on the timescale of days) will result in auto-correlation. Nonetheless the model

above allows a parsimonious description of the covariance matrix of returns when a polit-

ical event is upcoming. γi is the political factor loading and is a measure of stock i’s
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sensitivity to the upcoming election. Ceteris paribus, stocks with higher or lower γs will

have higher or lower correlation. µi + ζit is the part of the return not related to the

political event. Indeed when there is no upcoming vote the returns model reduces to

rit = µi + ζit. This is a poor description of the covariance structure of the portfolio

of stocks as there are no common factors. We now extend the model by applying the

ubiquitous Fama–French factor model to describe this part of stock returns.

The Fama–French factor model for equities is:

rit − rf = αi +

K∑
j=1

bijfjt + εit E(εit) = 0 i = 1, . . . , N j = 1, . . . ,K. (3.10)

There are N financial assets and K factors. rit is the return of the i’th stock at time t

and rf is the risk free return. The factors f1t, . . . , fKt are K univariate random variables

that vary with time. B is a N ×K constant matrix describing the loading of the factors

within the space of the N stocks (the elements of which are {bij}). ε is a vector of

shocks, assumed to be serially uncorrelated and weakly correlated across different stocks

as N →∞.

The aim of factor models is to explain the cross-section of returns, where premia can

only be earned from a small number of ‘risk-factors’. The key result of these models

comes from arbitrage pricing theory and is

µi = E(ri) = rf +

K∑
j=1

bijE(fjt).

Equivalently αi = 0 ∀ i in equation 3.10. This implication has been studied in numerous

papers and contexts, too many to discuss here. It is also not the topic of this paper.

The mainstay of finance asset pricing courses is the single factor capital asset pricing

model (CAPM). Expected returns are explained solely by the stocks sensitivity β, to the

single market factor Rm. Returns can only be increased by increasing exposure to this

factor, with correspondingly higher risk. However, discrepancies in data led to Fama and

French to extend CAPM with two additional factors related to the returns of small versus

large cap stocks and the returns of cheap versus expensive companies (measured by book-

to-value ratios), Fama and French, 1992. When this was found to be insufficient, two

more factors relating to operating profitability and investment were added in Fama and

French (2015). At the same time, the number of supposed risk-factors in the literature

exploded, leading to Cochrane referring to a ‘zoo’ of factors in his American Finance

Association Presidential Address, Cochrane (2011). Subsequent research has found that
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the vast majority of these findings were simply “data-mining”. Harvey et al. (2016),

studied 315 factors from the literature, concluding that only a handful are significant

once “data-snooping” is adjusted for.

We have no wish to enter the debate about which particular factors lead to excess

returns and are indeed risk factors. We also make no claims about whether or not the

political factor is a risk-factor. Indeed, we will not even impose the arbitrage pricing

condition αi = 0 ∀ i in equation 3.10. We simply wish to use some common factors

to describe the non-political part of stock returns. Doing so will enable us to study if

prediction markets are explanatory of returns once common factors have been controlled

for. We chose the five Fama-French factors for two reasons. Firstly, they are common in

the literature. Secondly Professor French has also gone to the trouble of publishing their

daily values for a variety of equity markets on his website, so we do not need to calculate

them.

Following the convention in the literature, we write the excess return of stock i as

Zit = rit − rf . We proceed by replacing the non-political part of the return, µi + ζit,

in our one factor political model (equation 3.9) with the general factor expression above

(equation 3.10). The result is

Zit = αi + f1t.bi1 + · · ·+ fKt.biK +4PBt.γi + ηit, (3.11)

where K = 5 and {fjt} are the daily returns of the five Fama-French factors. The shock

has been replaced by η in the full model above to distinguish it from the Fama–French

residual, ε. We now have a characteristic K + 1 (six) factor model which includes the

additional political component.

4PBt is unlikely to be uncorrelated with the factors {fjt}. Indeed, the outcome of

most political events will be expected to have an overall effect on the prices of stocks.

Changes in the probability of E = 1 will be highly likely to affect the returns of the

market Rm. When this is the case it is important to note that the factor loadings in the

full political factor model (equation 3.11), will be different from those in the standard

Fama–French model (equation 3.10). This is also the case for the political loadings {γi}.
These loadings in the full model will differ from those in the single political factor model

(equation 3.9). Only in the unlikely event of 4PBt being uncorrelated with {fjt} would

loadings be equal between the full model and the sub-factor models.

In this paper we are not interested in the accurate estimation of Fama-French factor

loadings in any one of these particular models. The purpose of the investigation is to

examine whether political markets are explanatory of stock returns, and if so, what the

political loadings can tell us about different stocks. As long as both the political loadings

{γi} are non-zero in either model, and 4PBt is not collinear with {fjt}, 4PBt will
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explain returns. It will also follow that 4PBt will be explanatory of the Fama–French

residuals {εit}. When collinearity occurs, loadings in the full model are not identifiable,

but, more importantly, adding betting market information to the model does not help

describe stock returns. This would be because changes in the betting markets would

already be fully explained by the Fama–French factors.

4 Empirical specification

Our theoretical model for stock returns is summarised as the full factor model

Zit = αi + f1t.bi1 + · · ·+ fKt.biK +4PBt.γi + ηit i = 1, . . . N, t ≤ T.

If we assume 4PBt is not collinear with {fjt} then the betting markets are explanatory

of stock returns if and only if γi 6= 0. Testing the validity of our model is equivalent to

testing that the set of parameters {γi} are significant. Rejecting H0 : γi = 0 ∀ i would

be strong evidence in favour for the model holding.

The model itself is a K + 1 characteristic factor model. The historical daily K

Fama–French factor returns are readily available from Professor K.R. French’s website7.

Histories from around 1990 are provided for download. The final political factor 4PBt
is available from betting markets for periods preceding a political event. In this paper we

rely on data solely from the Betfair exchange platform. This acts like a limit order book.

Contracts may be listed months and even years before an election. However, liquidity

generally increases as the event approaches. Far out from an election there may be no

trading at all on most days. 4PBt appears in the model as a measurement of the changes

in the probability of a political event Pt(E = 1). However, unless the betting market

is trading and liquid then the measurement will not be valid. Care will be required to

ensure there is sufficient liquidity when choosing which time period to apply the model

to. In practice only a small number of months or a few weeks directly prior to the election

will be considered sufficiently liquid.

One could proceed by estimating the full model above on this small period and at-

tempting to generate significance for γ. However, this would be inefficient. The much

longer history of the Fama–French factors would not be exploited for estimation.

First we must choose a period where we judge the betting market to be sufficiently

liquid to be a valid measure of beliefs about the odds for the political event. Call this

7https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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period the testing period. Say it starts at T1 and ends at T2. (In practice T2 will be the

day before the election result is announced, T − 1). Define a longer period starting at T0

and ending at T1 − 1. Call this the training period. Fama–French factor data from both

the testing and training periods will be used but only betting data from the testing set

is considered. The approach is illustrated in Figure 1.

Training Window Testing Window

𝑇0 𝑇1 𝑇2

Political Factor 
Becomes Measurable 
From Betting
Markets

Political Factor
Appears Due To
Upcoming Election

Fama–French factor loadings are estimated in the training window. Explanatory power of the betting
market on the Fama–French residual is tested in the testing window.

Figure 1: Schematic of the empirical approach.

One way to proceed would be to estimate the following regression

Zit = α̂i + f1t.b̂i1 + · · ·+ fKt. ˆbiK +
[
δt,{T1,T2} ×4PBt

]
.γ̂i + η̂it t = T0, . . . , T2 (4.1)

where

δt,{T1,T2} = I (t ∈ {T1 + 1, T2}) .

This replaces the political factor with δt,{T1,T2} ×4PBt. This forces the factor to zero

outside of the liquid testing period. However, this is a flawed approach. Political risk

may still be present prior to the testing period, and changing. An election, say, three or

four months in the future may be well known and the prospects for each of the candidates

varying. However, it just may be too far in the future to be in the minds of those that
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choose to place bets in a political market. Lack of participation in a betting market may

make an evaluation of the probability of an election outcome unmeasurable. This is not

the same as it being constant and unchanging though. Conducting a regression where it

is assumed to be zero in the training period will lead to invalid results.

To overcome this issue, and to use more of the history of the Fama–French factors,

we proceed as follows:

1. Estimate the Fama–French loadings α̂, B̂ during the training period t = T0, . . . , T1−
1.

2. Evaluate the Fama–French estimated residuals ε̂it = Zit − α̂i −
∑K

j=1 b̂ijfjt on the

testing period t = T1, . . . , T2.

3. Regress the estimated Fama–French residuals ε̂it on changes in the political factor

4PBt on the testing period t = T1, . . . , T2, without intercept.

The above approach involves the same regression as that of equation 4.1 under the null

hypothesis. For most event studies it would also produce identical statistics under al-

ternatives of interest. However, if the political factor is in fact changing in the training

set then the two step approach has greater power. This is demonstrated in Appendix A.

As discussed in the previous section the Fama–French loadings estimated in step 1

above will not be the same as the loadings in the full factor model. This is due to the very

likely correlation of 4PBt with the other factors {f1t, . . . , fKt}. However, significance of

γi in the regression

ε̂it = α+ γi.4PBt + ξit t = T1, . . . , T2

is equivalent to significance of γi in the full factor model. Note that we allow an intercept

in the first stage regression as we do not impose the arbitrage pricing theory constraint.

However, for the second stage we drop the intercept. This is because both E(ε̂it) = 0 and

E(4PBt) = 0. The level of PBt will change in the testing period but the unconditional

expectation is zero. Of course there will be estimation error in α̂, B̂. This will lead to

estimation error of ε̂it. However, the error will be in the dependent variable in the second

stage regression. Further, as the training and testing periods are disjoint, the estimation

error will be independent of the residual of the final equation ξit. No endogeneity will

be present in the final step and estimates of γi will be unbiased, although there will be

a reduction in precision.

4.1 Significance tests

In the next section we will test our model on a series of political events from recent years.

For each event we will select an appropriate universe of stocks and a betting contract
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and follow the process described above. There are two tests we will perform which are

outlined below.

4.1.1 Portfolio test

The first test we apply is to consider the univariate regression for an equally weighted

portfolio of the stocks of the chosen universe. If ε̂it is the estimated Fama–French residual

for stock i then define ¯̂εt = 1
N

∑N
i=1 ε̂it, the average estimated residual. We then conduct

the following regression

¯̂εt = γ̄.4PBt + ξt t = T1, . . . , T2.

If γi = 0 ∀ i then γ̄ = 0 in the above regression. Thus rejection of the null hypothesis

γ̄ = 0 rejects the null hypothesis of insignificance of the betting market. This is a simple

test to perform. It can also easily be made robust to serially correlated errors that may

occur due to the presence of errors in market efficiency, as well as heteroskedasticity.

However, the test is not robust to alternatives where the set of individual stock γs can

take different signs.

4.1.2 Jα tests of Pesaran and Yamagata

The above portfolio test may suffer from a lack of power. There is loss of information by

grouping all securities together in a single portfolio. As we are only conducting tests over

periods where the betting market will be liquid, T is likely to be of the order of 10s, and

certainly not much greater than 100. This is small compared to the number of stocks

available. For example, there are around 5000 stocks listed in the US alone. There is the

possibility of using large number of assets to generate significance, but this will require

a test for which N > T .

The problem of testing the arbitrage pricing condition αi = 0 when N > T was

solved in Pesaran and Yamagata (2012). They propose a test based on a normalised Wald

statistic, Jα, of the individual t-statistics of univariate regressions, adjusted for (threshold

applied) cross sectional correlations. It is robust to weak cross sectional dependence and

asymptotically valid in the case of non-normal errors.

We modify the Jα test to apply to the slope γi. It is this test that will be primarily

relied upon in the next section. Call this the Jγ test. We describe it further in Appendix

B. The test has been demonstrated to have excellent properties for our setting where there

may be non-normal errors and some correlation amongst stock residuals. For example,

Monte Carlo evidence shows the test performs well with minimal size distortions, for

samples of size T = 60 and 100 and N ranging from 50 to 500. These are similar sizes of
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N and T to those used in this paper. The test however is not demonstrated to be robust

in the presence of serial correlation (possibly in existence due to market inefficiencies) or

heteroskedasticity. In practice we will test the residuals of the second stage regression

for the presence of these effects. The lower power univariate portfolio test does have one

advantage over this large N test, which is that it is simple to apply robust errors.

Comment on power improvements to the Jα test

Improvements to the Jα (and other similar tests) have been proposed by Fan et al. (2015).

They demonstrate that the Jα test lacks power against sparse alternatives where, for ex-

ample, a finite number of stocks have significant αs. They add a power enhancement term

to the test statistic which vanishes asymptotically under the null, but has power against

such sparse alternatives. This may well be relevant when testing arbitrage pricing theory,

where a small number of stocks may be responsible for failures in market efficiency. The

empirical application in their paper, studying returns of the S&P500 index components,

certainly suggests so. However, we do not believe this is relevant in our application. If

betting markets are significant, we expect explanatory effects beyond a small number of

stocks or particular industry sector. The number of stocks with significant αs is likely

to grow as N → ∞. The Jα (or Jγ) tests should have power against the alternatives of

interest and we rely solely on them without power adjustment.

5 Results

We study six elections from recent years. To apply the method several choices need to be

made for each event. These are; what particular betting contract to use, what portfolio of

stocks to consider and what training and testing periods to use? A plot of the logarithm

of trailing 7-day average daily volume on the Betfair exchanges for our chosen event is

shown in Figure 2. Any key announcement concerning the event is also shown on the

figure. As can be seen, liquidity explodes exponentially as the day of voting approaches,

but can be very low a few months out. For example, the daily volumes trading on

exchange are under £10k, 5 months from several of the elections. We treat data from

lower liquidity days cautiously. Below, we discuss each event in more detail. Table 1 in

Appendix C lists each election along with their chosen specifications for testing. Note

that we test two portfolios for the Brexit referendum as well as the 2016 US presidential

election. Also, 1, 3 and 5 factor models are available for each Fama–French choice, the 1

factor equating to CAPM.
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Figure 2: Liquidity on Betfair in the months prior to our chosen political events.
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Figure 3: Betfair implied probabilities.
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5.1 Events

2014 Scottish independence referendum

The vote took place on 18th September 2014. The question on the ballot paper was

‘Should Scotland become an independent country’. Polls showed a consistent lead for

‘No’ during July and August of that year but tightened in September. In fact, on 6th

September a poll was announced showing a small lead for ‘Yes’. The pound and com-

panies linked to Scotland depreciated on that day and the betting contract paying out

£1 for ‘Yes’ rallied to 35p. Ultimately though, polls reverted and the ‘No’ side prevailed.

The risk neutral Betfair implied probabilities can be seen from Figure 3. The figure

shows the prices along with the chosen testing windows for this and the other political

events. As this was a binary Yes/No referendum the choice of betting contract is simple.

We chose the ‘No’ bet in our model. For stocks we chose all companies listed on the

London Stock Exchange (LSE), from Q2 2014, domiciled in the UK. Many small less li-

quid companies will be removed from the portfolio according to a further screening step.

This is discussed at the end of this subsection and is applied to all the portfolios studied

in this paper. Fama–French daily factor returns are available for the European market

and we utilise this as the most appropriate choice8. The choice of testing period is not

straightforward. The Scottish Government announced the date of the referendum on 21

March 2013, around 18 months prior to the vote itself. Liquidity on betting markets was

muted though. Little more than around a few thousand pounds exchanged hands per

day on Betfair through April, May and June 2014. The volume increased to around £10k

per day in July and peaked at well over £1m a day in the week before the referendum.

We chose to start the testing window on July 30th to give us sufficient time samples in

the testing window. The volume did start to significantly increase from around £25k per

day from this point.

2016 Brexit referendum

This is a binary vote and so the choice of betting contract is straight forward. We use the

contract for ‘Leave’. On 20th February 2016 David Cameron announced the date of the

referendum to parliament as 23rd June 2016. Liquidity improved on Betfair from this

point with around £100k per day trading the week after the announcement, with volume

peaking at around £50m on the overnight session following the vote. This makes our

choice of testing period easier. We chose the day after the announcement to begin the

testing window. The betting percentage odds during this period put the probability of

leaving the EU from between the high teens to the high 30s. However, by the day of the

vote there was a widespread (misplaced) belief that the country would vote to remain.

8Daily developed market factors are also available but the European centric-data set is preferred.
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The implied probability of a Leave vote bottomed out around 10%, just after the vote

closed. We make the similar choices for the equity universe and Fama–French factors as

the 2014 Scottish independence referendum, using stocks listed on the UK based LSE

from Q1 2016. We also separately test a portfolio of stocks that are made up of EU27

based companies that earned at least 25% of their revenues in the UK according to their

2015 full year accounts.

2016 US presidential election

The election of Donald Trump as the 45th president of the United States was the second

political surprise of 2016. As election day is set under statute as ‘the Tuesday next after

the first Monday in the month of November’, the date is known well in advance. However,

the two candidates are not nominated until the summer before the vote. Recall that our

model assumes a fixed difference between an expectation of a particular outcome (say

X) and the complement of that outcome (X). Even if one candidate is known, the com-

plement, that is the opponent, may not be. Thus the expectation of the complement can

change without the betting odds for the known candidate changing. For example, Donald

Trump’s nomination came before the Democratic candidate. The odds of the particular

Democratic candidate can change, effecting asset prices, without a corresponding change

to the odds of Donald Trump winning. So our model will not hold. Until both candidates

are known the model will not apply. The vote is not binary.9 Trump was officially nom-

inated at the Republican national convention on 19th July, Clinton, on July 26th at the

Democrat event. Liquidity for the election was much higher than the preceding events,

with hundreds of thousands of pounds exchanging hands on Betfair around the time of

the nominations. We are comfortable with using the betting markets from the day after

both nominations were known. We chose the contract for Donald Trump for the model.

Trump was (incorrectly) never seen as the stronger candidate. The percentage odds of

him winning never rose above the mid 30s during the testing window. For this event we

will use two different stock universes and test both. The first will be the index stocks of

the S&P500 in Q2 of 2016; the second, publicly traded stocks domiciled in Mexico. We

do not limit ourselves to companies listed on the major Mexican exchanges as many top

Mexican stocks trade off-shore. It was expected that a Trump win would be very bad

for trade with Mexico and hence its markets. The relevant Fama–French factors for both

these portfolios are the North American ones.

9The vote for US president is in fact never completely binary. There is always the chance that a
candidate may become incapacitated during the campaign. Running mates often trade with very small
but positive likelihoods. The morbidly interested reader can look at the betting odds for Kamala Harris
in the 2020 election to impute the market’s belief about the probability of the elderly president Biden
passing during his campaign!
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2017 UK General Election

The result of the 2016 Brexit referendum was a surprise. The ruling Conservative party

had a working majority of 17 in the house of commons.10 There was no election due under

the Fixed-term Parliaments Act until May 2020. However, following the UK’s triggering

of Article 50 of the Treaty on European Union, the Prime Minister Theresa May called

a surprise election. This was to ‘strengthen her hand’ in negotiations with the EU.

Ultimately though she failed in that aim. She lost her majority and following the result

governed as the leader of a minority government with the support of the Democratic

Unionist party.

Legislation to enact a general election was ratified by parliament on 19th April, 2017.

The date was set for 8th June 2017. Until 18th April, the day before the announcement,

liquidity for this event on Betfair was minimal, struggling to reach even £100 per day.

However, trading jumped to around £100k a day once it became clear an election was

imminent. It increased to over £1m per pay in the days before the vote. The choice of

testing set is clear with this event as there is simply no liquidity prior to the date of the

election’s announcement.

Until the snap election became public, the odds for a Conservative majority were

barely trading. For the few trades that did occur, the implied probability was around

50%. The lack of liquidity was likely due to the fact that the election was not scheduled

for several years. Gamblers were neither interested in, nor informed about, the details

of the election. This observation is remarkably consistent with the findings of Page and

Clemen (2013) that there is a ‘bias of the price towards 50%’ for events far into the

future. Until the announcement of the election date, the vote was indeed expected to be

‘far into the future’. Going into the campaign, opinion polls consistently showed a lead for

the Conservatives. They tightened as the vote approached. Implied odds for a majority

rallied to over 80% when the election was announced. They stayed in the range 78–95 until

the vote. The choice of which contract to use is not straightforward. If the Conservatives

did not achieve a majority, then there were were potentially multiple alternatives. Bets

for a ‘Labour majority’, a ‘hung parliament’ or ‘anything else’ were listed. However, the

Conservative’s lead over the Labour party was such that the probability of an actual

Labour majority was very small. For the most part of the campaign, odds for this

outcome hovered around 1–2.5%. It did increase a little as the polls tightened going

into the election but was never implied to be higher than 4%, except for a few trades on

election day. This means the event was close to binary with the majority of the probability

distributed between a Conservative majority and a hung parliament. However, we should

note our model does not hold exactly. In terms of the universe of stocks, we will stick with

10There are 650 seats in the house of commons and 17 is considered a small majority which makes
governing difficult.
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all stocks headquartered in the UK listed on the LSE (in Q1 2017), with the European

Fama–French factors.

2019 UK General Election

Following the UK government losing its majority in the house of commons in 2017 there

was prolonged political deadlock. This led to Theresa May resigning as Prime Minister.

Boris Johnson was elected as her replacement by the Conservative party in the summer

of 2019. Johnson could not, though, convince the house of commons to pass a revised

withdrawal agreement11. This caused him to call a snap election, the third general

election in four years. Legislation was passed on 28th October 2019 and the date was set

for 12th December. As was the case with the 2017 general election, trading on Betfair rose

significantly over the announcement. For example, the day before only £2,600 traded,

whereas the day after volume jumped to over £100k. Volumes generally increased from

this point with over £2m per day trading in the final week. Given the uptick in volume

we will again start the testing period the day after the announcement.

Throughout the campaign period, the Conservatives held a strong lead over the La-

bour party. However, the implied odds of a Conservative majority was relatively low

compared to opinion polls. It traded in the range 40–55% in the first fortnight of the

campaign. This was likely due to the underperformance of the Conservatives versus initial

polling and expectations in the 2017 election. The odds did steadily increase to around

70–80% as Labour failed to significantly tighten the polls. The Conservatives ultimately

gained a landslide win with a huge majority of 80 seats in the house of commons. We

again use the bet for ‘Conservative majority’. The prices for a labour majority did ini-

tially imply odds as high as 6% but this soon dropped to the 2–3% range as they failed

to make ground. The alternative to a Conservative majority was again dominated by a

hung parliament. We again use the same choices for the equity universe as the preceding

UK events, with UK stocks listed on the LSE in Q3 2019.

2020 US presidential election

In 2020 the presidential election was scheduled for 3rd November. There was never any

doubt that Trump, as sitting president, would run for a second term. However, there

was a political battle for the heart of the Democratic party between establishment Joe

Biden and the left winger Bernie Sanders. On June 5th Joe Biden gained the required

number of delegates from the Democratic national convention to secure the nomination.

Volume on Betfair for this event was in the hundreds of thousands of pounds a day at

11The withdrawal agreement was made between the UK and the EU and established the terms of the
UK’s withdrawal from the EU.
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the time of the nomination. This increased to around £1m a day in the days immedi-

ately prior to the vote. As we now know, president Biden did not secure the Presidency

the day after the election. In the days and weeks after voting day there were numerous

recounts. There were also several (seemingly baseless) legal challenges by the Trump

campaign looking to overturn what was apparently a clear win for the Democratic ticket.

Contracts continued to trade on Betfair until 14th December 2020. The electoral college

confirmed Joe Biden’s victory in the election on that date. There is no doubt that there

are numerous opportunities to study financial and political markets in the period 9th

November to 14th December 2020. However, we do not believe the model presented in

this paper will apply. This is because the prospects of a Joe Biden win and its altern-

ative will have fundamentally changed. Instead of political risk relating to this election

disappearing overnight on 8th November, it substantially increased. The prospect of

Donald Trump retaining the presidency via a typical presidential election and one where

the apparent rightful winner is deposed by the courts (or worse) is very different. The

risk becomes less about what the electorate is voting for and more about the strength of

US institutions. Political implications aside, the conditional expectations of asset prices

given a Biden or Trump win certainly changed on 4th November 2020. Given this, we

have no confidence the model will hold. We end the testing set on 3rd November. We

use two equity universes to test this event; the index stocks of the S&P500 in Q2 of 2020

and stocks domiciled in Mexico in Q2 2016.

5.2 Data sources and handling

Equity data

For each event we have selected a universe of stocks and Fama–French factors. Our aim is

to ascertain if there is evidence to reject the null hypothesis γ = 0. We sue CRSP adjusted

close data to calculate stock returns.12 We use a variety of sources to conduct stock

screens and source price data, including S&P Capital IQ, Thomson Reuters Datastream

and Yahoo Finance. We do not exclude data points for days with specific company results

or other announcements. This will no doubt introduce variance unrelated to either the

political event or the Fama–French factors. Removing the corresponding return for such

announcements would ‘clean’ the data set. Doing so would likely reduce the variance of

the unexplained part of our regressions and potentially improve significance. It would also

involve a considerable computational effort. We do not take this step, choosing to focus

on testing a greater number of events, rather than a smaller number with cleaner data.

This means there is an implicit assumption in our method. This is that the frequency of

12Adjustment methodology can be found at https://www.crsp.org/products/documentation/

crsp-calculations.
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such stocks specific events is similar in training and testing sets. There is no reason to

believe that this assumption is not valid.

Many of the stock universes we have chosen include all equities listed on a particular

exchange, or domiciled in a particular country. This will include many illiquid and

infrequently traded stocks. They may not respond to changes in the odds of a political

event as they simply may not be traded. There may also be stocks included that do

not exist for all of the training and testing sets. The estimates of the factor loadings

may not be accurate for such stocks. To remove such securities we apply a filter to the

portfolio. Firstly we remove any stocks that were not trading at the start of the training

set. Secondly we only consider stocks that have trades, and non-zero returns, for 90% of

days in both the training and testing sets. In practice this reduces the size of our stocks

universes significantly.

Figure 4: Betfair Exchange market for the ‘Next President’ on 21st Nov 2020, 18 days
after voting closed.
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Betting data

The betting company Betfair runs a platform called Betfair Exchange. This functions like

a limit order book. For sporting, political and other events they list markets where orders

for bets can be placed and executed. For each market, various selections are listed. Only

one of the selections on each market will ultimately win. Participants can either ‘back’

or ‘lay’ each selection. The prices quoted are in terms of odds. Backers of the winners

receive the odds multiplied by their stake, less a small percentage commission levied by

Betfair. The payout, gross of commission, is paid by the participant that laid the relevant

matched bet. The risk neutral probability, ignoring commission, for a selection with odds

o is 1/o. In this paper we only quote probabilities and not odds. We consider each bet

listed to be a binary option pays out £1 and costs £1/o . Figure 4 shows a screen shot

of the Betfair market for the 2020 US presidential election on 21st November 2020. This

was in the height of the political mayhem that followed the election when Donald Trump

was contesting results with various legal challenges. It can be seen that the risk neutral

probability of him winning is seen at almost 4%,13 although we believe the discount to

the payout from a Biden win is largely due to risk and cost of capital matters. Note that

all contenders apart from Trump and Biden have orders to lay at 1000 to 1 (1000 is the

maximum odds allowed on the exchange). The market has reflected the removal of the

other candidates from the presidential race.

The raw data we use from Betfair are matched trades on the exchange for the relevant

market. For non-binary markets, which have multiple possible outcomes, such as the US

presidential election shown in Figure 4, we only consider trades in a single selection (cor-

responding to E = 1). We handle binary events (Brexit and the Scottish independence

referendum) differently. Here we use both selections, converting the alternative probab-

ility to the chosen selection via P(E = 1) = 1 − P(E = 0). The market is sufficiently

efficient that arbitrage opportunities do not exist by holding every selection on a market

(doing so guarantees a risk-free fixed payout). Trades also happen at multiple times

throughout the day and at various prices. We need to convert the trades into a daily

difference that aligns with the stock returns. We do this by choosing the trade that

happens closest to the time of the relevant equity market close on each day.

Fama–French factor data

Fama–French daily factor returns are available for download from Professor French’s

website14. We use data for the five factor model for both the training and testing periods.

The factors are labelled MktRF, the market return, SMB, the small minus big size

13The binary option that pays out £1 in the event of Trump being named as next president is bid at
£1/27 and offered at £1/26.

14https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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companies, HML, high minus low value stocks, RMW, robust minus weak operating

profitability and CMA, conservative minus aggressive investment. We use two years

worth of data immediately prior to the testing set to estimate the Fama–French loadings.

We judge this period sufficient to estimate the factor loadings. We avoid choosing a

longer training set to avoid the possibility of structural breaks in stock loadings. Over

long periods of time the factor loadings may change for a stock. For example, small

companies can become large ones.

5.3 Results

Firstly we examine relationships between the factor returns and the betting markets.

We regress each factor on 4PBt and an intercept in the event window for each political

event. Note we exclude the day after the election. This is because both the changes in

betting odds, and market moves, can be very large on that day. Including this day will

dominate any OLS regression. Further, returns, and Fama-Franch factors, are calculated

based on market close. If we were to include the day after the election, it would be

better to look at the market open as this will be the first snapshot of prices post-result.

There can be large intra-day volatility the day after the outcome becomes known. For

example, the market rout that followed Trump’s shock win 2016 was completely reversed

within the day following a reassuring morning address from the new president. If there

is a relationship between the betting and stock markets we want to test that it is per-

sistent over a reasonable length of time and not just when the election result becomes

known. Results for the slope for these regressions are shown in Table 2. Errors robust

to heteroskedasticity are used. The betting markets do not explain the variation in the

European factors for the Scottish independence referendum. This is not surprising as this

was a UK based event and the factors are based on the whole of the European market.

Correspondingly though for the Brexit referendum, there is a significant relationship at

the 99% level for the market return, and at the 90% level for the SMB factor. Brexit was

an event that had potential effects beyond the UK and could affect many large European

economies and exporters. (The Fama–French European factor covers both the UK and

mainland Europe.) The estimated slopes in the regressions suggests a difference in price

of the average European company of 17% (±5%) between the UK remaining in the EU

and leaving. Smaller companies would be expected to outperform by 3% (±1.9%) under

Brexit, perhaps as smaller EU companies are less likely to export to the UK than large

ones. The 2017 UK general election has surprising results. MktRF and SMB do not

appear related to the betting market, but the other three factors do. This election was

called by the Prime Minister Theresa May to ‘strengthen her hand’ in any Brexit nego-

tiations. The outcome of this election could have been expected to have an effect on the

type of deal the UK and the EU would ultimately strike. It then follows that the probab-
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ility of Theresa May gaining a majority could have an effect on stock prices throughout

Europe. However, it is puzzling that effects were seen on stock prices according to their

relative value, operating profitability and investment strategy, but not on the overall level

of the market. Further, no significant effects were seen on the Fama–French factors in

the general election two years later, where the new Prime Minister Boris Johnson was

vowing to ‘Get Brexit Done’. For the 2016 US presidential elections, there are significant

effects in the SMB and CMA factors. The relationship between MktRF and 4PBt is

not significant though. This is a surprise given the huge sell off in asset prices follow-

ing Donald Trump’s unexpected win. We do note that the estimated slope coefficient

does suggest the market would be 5.2% (±4.8%) lower if Trump were to win15. For the

2020 election, no significant effects are seen on the Fama–French factors from the betting

market.

To experiment to see if the betting markets become more informative as the election

approaches we re-run the regressions, but begin the event window only a calendar month

before the dates of the election. The new results are shown in Table 3 and are striking.

All factors are now significant for the 2016 election bar RMW and MktRF and CMA are

significant for the 2020 election. Biden is now seen as having a rather unbelievable positive

effect of around 25% (±8%) on the stock market if he were to replace Trump as president.

This suggests that the betting markets become more informative as the election nears

which is consistent with the observation that liquidity exponentially increases during this

time too.

5.3.1 Significance tests

We now turn to results of significance tests for the model. Results tables for the tests

are found in Appendix D. As with the Fama–French factor regressions, we exclude the

day after the election from the testing period. Including the day would almost certainly

generate significance. However this does not test that the model holds over a general

period and would relate to significance ‘after the fact’. We apply the steps in the empirical

specification for the residuals of the K=0, 1 and 5 factor Fama–French models. For K=0

we simply regress stock returns, less their mean from the training set, on 4PBt. K=1

corresponds to residuals from the CAPM model. Both the mean weighted portfolio and

individual stock Pesaran and Yamagata tests are run. Results are shown in Table 4. We

perform various diagnostics to check for serial correlation and heteroskedasticity.

From the pricing model recall that the presence of serial correlation in the regression

errors is consistent with errors in market efficiency. It would also invalidate the results

of the Jγ,2 test. Ljung Box statistics are calculated for all regressions, including the

15The S&P500 future initially sold off by 4.8% overnight. The odds for Trump increased from around
20% to 99% during this time.
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multivariate form of the statistic. There is little evidence of serial correlation from the

mean weighted portfolio regressions. Of the 24 regressions conducted a single one has

a significant Ljung-Box statistic at the 95% level. This is for the one factor model for

the 2016 US presidential election. This is not repeated for the other factor models, nor

for the individual stock regressions for that election. We ascribe little relevance to this

observation. There is also no evidence for serial correlations from the portfolio regressions

with no significant Ljung-Box statistics. The conclusion is that the data demonstrate

no evidence of market failure. The election night model of Auld (2022) found deviations

of weak market efficiency of the order of minutes to tens of minutes. However, it is not

surprising that no inefficiency was found here as we are using much less frequent daily

data. Discovering an inefficiency on this time-scale would be a much more surprising

result.16

Turning now to heteroskedasticity we conduct both the Breusch-Pagan and Engle

ARCH tests for the univariate portfolio regressions. The Engle test provides some evid-

ence of deviations from homoskedasticity in these univariate regressions. We note though

that only one event, the 2019 UK general election, is significant, at the 95% level, once

the first market wide factor has been controlled for. However, results of these regres-

sions will be valid as heteroskedasticity robust errors are employed. For the Jγ,2 tests

we conduct the Ling and Li (1997) test. We observe a single significant value, (at the

95% level), for the zero factor model in the Brexit test. Again we do not ascribe any

relevance to this finding as it is not repeated for the higher factor models. In general we

are confident that conclusions drawn from the modified Pesaran and Yamagata Jγ,2 tests

are valid.

In short, we observe highly significant values of γ for four of the six events studied.

We also note that, as expected, the Jγ,2 tests have higher power than the univariate

mean-weighted portfolio test. Significance of the portfolio test is only ever found when

the Jγ,2 is significant, but the opposite is not true. We discuss the results below in more

detail.

For the 2014 Scottish independence referendum, Jγ,2 is significant at the 95% level

for K=0 and at the 99.9% level for K=1 and 5. This is consistent with the conclusions

of Darby et al. (2019) and Acker and Duck (2015) that showed that the CAPM residuals

are related to betting odds. However, we go further and demonstrate that there is still

explanatory power in the betting markets when the additional Fama–French factors are

controlled for. We note that the average value of γ implies an average decrease in the

price of UK stocks of 2.5% between Scotland voting for independence and voting to

remain in the UK. The regressions on the residuals of the higher factor models estimates

16Given the number of regressions performed, we would expect a small number of seemingly significant
Ljung Box statistics at the 95% level under the null hypothesis of no serial correlation.

32



the decline relative to the European wide market. This is because the factors used are

Europe wide. The underperformance of UK stocks relative to their European peers is

estimated at 1.7–1.8% given a vote for independence versus Scotland remaining in the

UK.

The 2016 Brexit referendum also produced highly significant findings for UK based

equities listed on the LSE. All the models produced Jγ,2 significant at the 99.9% level.

Two of the three univariate regressions are also significant at the 99.9% level for K=0,

and at the 90% level for K=1. Estimated values of γ imply very steep falls in stocks

given a vote for Brexit. The K=0 model suggests an overall decline of 15% (individual

regressions) relative to a vote to Remain. The K=1 and 5 models estimate declines for

UK stocks relative to the overall European market of around 2.6–2.8%. Results for the

Brexit referendum for the European exporters portfolio are interesting. Recall that the

betting markets were highly explanatory for this European wide market factor. γ is

significant for K=0 but once we control for the first market factor, MktRF, they become

insignificant. The significance seen for European exporters in the raw returns is due to

4PBt driving the wider European market. However, 4PBt does not explain the CAPM

residual, even for European companies that generated over 25% of their revenues in the

UK in 2015. These companies were not expected to perform significantly differently than

the wider European stock market, given a vote for Brexit. We note that the estimated

fall for these European exporters of 13% is consistent with both the estimated fall of UK

stocks (around 15%) and the estimated underperformance of UK stocks (3%), to within

standard errors. Recall also that a regression of the European wide MktRF factor on the

betting market for this event was significant. The estimated effect of a 1% change in the

odds of Brexit led to a fall of 0.16% ± 0.05%. Again this is broadly consistent with the

fall of European exporters estimated in the portfolio regressions.

The 2016 US presidential election was a major event for Mexico. Changes in the

probability of a Trump victory were highly significant for Mexican stocks, both outright

and relative to the North American market. All univariate and multivariate tests were

significant at the 99.9% level. The difference between a Clinton and a Trump win was

estimated to have an average effect on Mexican stock prices of 18%. The decline relative

to the North American market was estimated at around 16%. We note that for the

Jγ,2 test N < T . Although the test is not asymptotically valid in such cases, Monte

Carlo simulation of test statistics presented in Pesaran and Yamagata (2012) suggest

good performance for similar values of N and T , when N < T . They also demonstrate

for these values superior performance to the standard multivariate test of Gibbons et al.

(1989). Furthermore we do not need to rely on the modified test of Pesaran and Yamagata

here as the weaker mean-weighted portfolio test generated significance anyway. For the

historical S&P500 constituents our tests do not generate significance, even for K=0. This
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is particularly surprising given the sell-off on the night of the election itself. This is a

surprising result, but not dissimilar to the finding that 4PBt did not explain MktRF

when regressing over the full event window. This will be explored further later.

Our final significant event was the 2019 UK general election. Boris Johnson was

the firm favourite to win this election promising to ‘Get Brexit Done’. His opponent

Jeremy Corybn had doubled down on his left wing policies after failing to win the 2017

election. He launched what was seen as the most left wing set of policy ideas seen for

a generation, Pickard (2019). Policies included raising taxes sharply for companies and

higher earners as well as nationalising key UK companies. A failure for Boris Johnson to

gain a majority may have opened up the possibility of a reversal of Brexit as opposition

parties were suggesting a second referendum. However, for asset markets, Jeremy Corbyn

was now apparently seen as the bigger threat. Also, failure to gain a majority could likely

continue the intense political uncertainty that had dogged the UK for the preceding few

years. A Conservative majority was seen as significantly positive for UK stocks, both

outright and relative to the European market. Jγ,2 is significant for all three models (at

the 99.9% level). Estimated values of γ imply an average premium for stocks of 1.4%

under a Conservative majority.

The two events that did not generate significant γ are the 2017 UK general election

and the 2020 US presidential election. It may be the case for these events that either,

one, γ = 0, and the political event is not informative for asset prices, or two, that

the elections are informative but that noise in the data fail to generate statistically

significant regression coefficients due to γ being small relative to the variance of the

full model residual ηt. We cannot be certain of the answer. However, it is plausible

that neither event is in fact, for the average stock, informative for prices. γ = 0 appears

consistent with the very muted reaction seen in the markets for the 2017 General election

on what was in effect a shock result. Prior to this election there was political gridlock

due to disagreements about Brexit. Although the opposition Labour party was seen as

less friendly to business, power for them would have made the odds of remaining in the

EU more likely. Results for the market were not clear. However, by the time of the

2019 election, opposition policies had become either more extreme or more progressive,

depending upon one’s political viewpoint. Either way, in 2019 the implications for the UK

stock prices from a Corbyn win were generally seen as being more negative than from the

certainty of Brexit under the more generally perceived business friendly Conservatives.

The possibility that the outcome of the 2017 election was not informative for stock prices

at all, and that γ = 0, is also suggested by the very small values of the t-statistics in

the stock by stock regressions. This is −0.07 (or −0.13 for K=1) and
√
t̄2 = 0.99− 1.00.

Similarly for the 2020 presidential election, as the US stock market had been on a roar

during Trump’s presidency (contrary to 2016 fears), implications for stocks were not at
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all clear either in that election. Either result is less surprising than the failure of the

2016 presidential election to generate significance for the S&P500 constituents.

5.3.2 Weighted regression tests

The failure to demonstrate that betting markets significantly explained the returns of

the S&P500 stock returns (and their Fama–French residuals) was a puzzling result for

the 2016 US presidential election. This is a similar result though to the failure of the

betting markets to explain the returns of the first market factor, MktRF, over the same

period. However, significance was found when regressing MktRF over the shorter period

of the month preceding the election, both for this election and the 2020 presidential

election. Could it be that the betting market’s explanatory power increases closer to an

election? This would be consistent with the findings of Page and Clemen (2013). They

demonstrated the performance of prediction markets is negatively correlated with time to

expiry of the market. As the election nears it tends to dominate the news cycle and will

more likely be on the minds of potential bettors. Betting volumes also increase hugely.

To explore the idea we apply a weighted regression scheme to our significance tests,

with the weights increasing as the election nears. The Jγ tests of Pesaran and Yamagata

allow this as long as the same weighting is used for each individual stock regression. The

weighted estimates of correlation coefficients are also required when adjusting for cross

sectional dependence of returns. This is trivial to apply. A weighting scheme will need to

be chosen. It would be natural to weight by the volume traded in the betting markets.

However, as Table 2 shows, the liquidity can increase by several orders of magnitude

during the testing period, and peaks just before the election. Using raw volume will

simply put all the weight on the final few days. Using the logarithm of volume could be a

choice but probably does not increase sharply enough given the large increases in volume.

Rather than come up with a scheme whereby we make some choice of function of volume

to use, we will simply weight in the time dimension. We chose to increase the weighting

exponentially by a relatively modest 5% per week.17 Regressions and significance tests

are run for both individual stocks as well as the equally weighted portfolio. Results are

shown in Table 5.

For the previously significant stock universe and event pairs, results are repeated

but with increased significance. Absolute values of t-statistics and estimates of Jγ,2

are higher. Values of γ are also similar. We will not in general discuss these results

individually. One meaningful change is with the European exporters portfolio during

Brexit. Not only has the significance of the betting markets improved for the K=0 model

(and become significant in the univariate test) but the K=1 and 5 models now produce

17Schemes whereby weightings of 2.5% and 10% were also tried. The same ‘sharpening of results’ was
also observed albeit to different degrees. Results are available by contacting the author directly.
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significant results (at the 99.9% level). A small outperformance of these stocks versus the

European average given Brexit over Remain of 1.4–1.9% is estimated. This is surprising

as this author expected European exporters to the UK to underperform given a Brexit

scenario. There may be other factors at play here, such as these companies exporting

more outside Europe, potentially mitigating a downturn in EU revenues, than the average

European company.

With regards to the S&P500 universe in the 2016 presidential election, results are now

highly significant using the weighted regression. All Jγ,2 tests are significant at the 99.9%

level and the K=0 univariate equally weighted portfolio test is significant at the 95% level.

It appears that the information content of the betting markets may indeed improve as

the election is approached. The K=0 models imply a fall in price of the average S&P500

stock of 8% given a win for Trump versus Biden. The K=1 and 5 models actually predict

a small outperformance of 0.4–0.8% of the S&P500 versus the North American market

as a whole. This may be highly significant but it is an economically small effect.

The 2017 UK general election remains insignificant using the weighted regressions.

Again very small values of t-statistics are found in the stock by stock regressions. t̄ is in

the range −0.04 to −0.11 and
√
t̄2 = 1.06. We conclude that our model is not relevant

for this event and indeed γ = 0.

Finally we see that using a weighted regression generates some significance for S&P500

stocks in the 2020 US presidential election. For K=0 the results are significant at the

99.9% level for the stock by stock test and at the 95% level for the equally weighted

portfolio regression. The typical index stock is expected to outperform by 20% given a

Biden win over a Trump win. The K=5 model also generates a significant Jγ,2 at the

99% level. However, the predicted outperformance of the index stocks of 0.3% versus

the wider North American market is economically insignificant. We note that using

the weighted scheme has generated significance for the S&P500 portfolios for both US

elections studied in this paper. Betting markets do explain the moves in outright stock

returns. However, despite the betting markets having significant explanatory effects on

the residuals of the Fama–French model for these index stocks the predicted effects are

very small and economically insignificant.

In general, using significance tests based on the weighted regressions has sharpened

our results. Events that were deemed to be significant using the standard regression over

the whole testing period remain significant but more so. We have also demonstrated that

the betting markets explain the returns of S&P500 stocks using the weighted scheme.

This suggest that the information content increases as the election nears. This is a not

unexpected result given the explosion in trading volumes on betting exchanges as the

election is approached. However, we do not generate results of economically meaningful

magnitude for the Fama–French residuals of the S&P500 index stocks. Finally our model
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does not appear to hold in that γ = 0 for the 2017 UK general election. The results of

that election did not seem clear for Brexit and hence stock prices given the particular

political situation in the UK at that time.

5.3.3 Political factor loading characteristics

Next we investigate the political factor loadings γ and how they vary with any common

observable characteristics of the stocks. We examine how γ varies for the 5 factor model.

This will identify the political sensitivity of individual stocks, controlled for common

characteristics related to the Fama–French factors. We need to caveat our results. We

regress the loadings against some observable characteristics. However, not all stocks

had the necessary data we sought. As such we cannot discount the possibility of some

sample selection bias in what we report. However, most events had reasonably good data

coverage and the relationships uncovered were generally strong. We are confident of the

direction of the relationships revealed if not their exact magnitude.

For the 188 stocks listed on the LSE that survived our selection process for the 2014

Scottish independence referendum, 158 of them published easy to access percentages of

revenues for the UK in their 2013 full year accounts. We expect a greater sensitivity to

independence for stocks that generate more of their revenues onshore, as the UK economy

would likely suffer more than international peers. Thirteen of the companies were also

headquartered in Scotland. These latter stocks would be much more likely to affected by

independence than companies based in the rest of the UK.

Table 6 shows the results of a cross-sectional regression of γ against these two char-

acteristics. Results for similar regressions from the other events are also shown in the

table. Both characteristic’s coefficients are significant. For every additional 1% revenue

earned onshore in 2013, γ would be 0.0008 higher. This means the sensitivity of the

stock price to the election increases eight basis points (0.08%) from that 1% additional

UK based revenue. By sensitivity here we mean the expected difference of prices between

Scotland leaving or remaining as part of the UK. The coefficient of the ‘HQ in Scotland’

indicator implies an increased sensitivity due to being based in Scotland of 7.3%. Darby

et al. (2019) demonstrated that sensitivity to betting odds helped predict cross sectional

returns of Scottish based companies. The work in this paper goes further and shows

that Scottish headquartered companies had significantly more risk to the 2014 Scottish

independence referendum than other UK firms.

For stocks listed on the LSE in the Brexit referendum, we use percentage of revenue

generated in developed European markets published in the 2015 full year accounts. This

includes the revenue earned in the UK. This developed EU markets figure is found to be

very similar to the revenue figure for the UK only. (Most of the revenue earned by UK

companies in developed European markets is earned in the UK.) Joint regression of γ on
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both these figures is problematic due to co-linearity. We chose the European number to

include any effects on exporters to the EU (who are also likely to be affected by Brexit).

These figures are available for 183 of the 219 stocks used in the regressions. European

revenue is significantly explanatory for γ at the 99.9% level. The political sensitivity

increases by about ten basis points for every additional percent of developed European

revenue earned. Put another way, for every additional percent of revenue earned outside

of developed European markets, stocks are expected to have prices eight basis points

higher in price under Brexit (versus Remain). We also regress γ on revenue earned

in the UK in 2015 for the EU exporters portfolio (available for all the exporters). No

relationship was found. The UK sales figure was not informative with a very low R2 of

0.008.

For the 2016 election where Trump won the presidency, we study both the S&P500

index stocks as well as Mexican companies. For the index stocks we source percentage

of sales earned locally in the US in 2015 (we hypothesise that exporters would have

more sensitivity to a Trump win given the potential for increased trade disruption).

The characteristic was available for 461 of the 488 index stocks that were used in the

significance tests. The local percentage of revenue figure was highly significant with

γ falling 7.5 basis points for every additional percent of revenue earned locally. This

is puzzling, as this means γ was increasing with increasing exports and that exporters

would be likely to perform better under a Trump versus a Clinton presidency. We have no

explanation for this result but do note that the estimated values of γ for this model had

on average an expectantly positive sign, although the effect was very small (γ̄ = 0.004).

For the Mexican portfolio we use the percentage of revenue earned in the US in 2015.

Unfortunately this was only reported for 16 of the 51 stocks used. The regression does

not generate significant results, not unexpectedly since N is so low. The coefficient is

estimated at −0.199 ± 0.174 (p = 0.271). This suggests a Mexican stock that earns all

revenue from the US is estimated to have prices 20% lower under Trump versus Clinton

than a Mexican company that earns no revenue in the US.

For the 2017 UK general election we do not proceed as we have concluded our model

does not hold (γ = 0). For the 2019 UK general election portfolio we use the 2015 re-

ported percentage revenue earned in the UK. This is available for 202 of the 243 stocks

considered. Jeremy Corbyn, the opposition Labour party leader, also promised to na-

tionalise seventeen UK based companies, if he won, Rees (2019). We regress γ on the

UK revenue percentage and an indicator based on whether or not the company would

be nationalised under Labour. UK Revenue is significant at the 99.9% level. Political

sensitivity increases with UK revenue, eleven basis points for every additional percentage

point revenue earned onshore in 2018. This means UK focused businesses were expected

to perform relatively poorly had the Conservatives failed to get a majority, relative to
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exporters. The coefficient on the indicator of nationalisation risk under Corbyn is not

significant, but is estimated at 3.9%. We note that the average γ for stocks identified

as being nationalised under Corbyn is 0.055 ± 0.12 versus 0.012 ± 0.17 for the other

stocks. We thus test equivalence of the distributions of γ amongst stocks conditional on

nationalisation risk, versus conditional on no nationalisation risk. We apply a one-sided

two-sample Kolmogorov–Smirnov test. The null is that the two samples come from the

same distribution versus an alternative that the CDF for the sample given nationalisation

risk is higher. The Kolmogorov–Smirnov test statistic is 0.325 with a p-value of 0.028.

The 17 stocks Corbyn named as nationalisation targets are significantly more sensitive

to the result of the election than others at the 95% level.

Finally we seek a relationship for the S&P500 index stocks for the 2020 US presidential

election. 2019 local percentage revenue is available for 404 of the 487 stocks used in the

model estimation stage. This is not explanatory for γ with a very low R2 reported of

0.002.

Elections often involve domestic or geographical risks. It is likely that companies

that earn more revenue offshore or internationally are more able to diversify away from

election risks. Some evidence for this hypothesis was present in the literature for Brexit,

Hill et al. (2019). Internalisation was found to decrease the sensitivity of UK stock prices

to the betting odds for Brexit as well as the day-after-result return. In this paper we

have extended these findings, testing this idea for all six events. We included a proxy

for national revenue (or developed EU revenue for Brexit), finding that internalisation is

indeed significantly explanatory for four of the six events. These results both complement

Hill et al. (2019) and improve them. Not only do we consider more events, we check the

explanatory power after the five Fama–French factors have been controlled for.

Similarly we have repeated an observation made in one of the oldest studies of elec-

tions risk and financial markets (Gemmill, 1992). For the 1987 UK general election this

paper showed there was a much larger increase as the election was approached in op-

tion volatility of stocks that were at risk of nationalisation under the Labour opposition.

History appears to have repeated itself in 2019. The then Labour leader Jeremy Corbyn

threatened to nationalise various utility and other companies if he won. Here we meas-

ure political risk as the sensitivity to betting odds of the Conservatives failing to get a

majority, finding the risk significantly larger for companies at risk of nationalisation.

6 Conclusion

The information content of political prediction markets is well documented. As is the

effect on asset prices of elections and other political risks. Given this, it is natural to ask

is there a way to formally link prices between political markets and financial markets?
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Auld (2022) sought to answer this question in the very particular circumstances of the

overnight session following a vote. However, this paper aims to describe the relationship

between these two types of markets in the weeks and months leading up to a political

event. There are a small number of examples in the literature that study this question

(see Manasse et al. (2020), Hanna et al. (2021), Acker and Duck (2015) and Darby

et al. (2019)). However, they consider only a single event and typically study only

empirical relationships. We build a pricing model for the asset pricing relationship from

the ‘ground-up’ using an economic assumption and common pricing restrictions from

the asset pricing literature. That we recover a relationship between asset price returns

and the first difference of betting markets is perhaps no surprise. Indeed other papers

have studied this relationship empirically. However, this work differs in that we have

an economic basis for the model, and also test it on multiple events. Indeed the main

contribution of this paper is to present a model that is grounded in economic assumptions

and can be applied to any political event. In fact the model applies in more general

settings; it can be used for any events where there is a liquid prediction market and

whose outcome has an effect on asset prices. There are no comparable studies in the

literature.

To build the model we make a key assumption. This is that the difference of the

conditional expectations of asset prices (given the result of the election) is fixed. This

leads to a relationship in first differences. The variance of returns of asset prices are

separated into a political part, explained by political markets, and a residue, related to

commercial, economic and other non-political factors. The model is naturally extended

using the Fama–French factors to describe the variance of the non-political component.

The resulting model is an extended characteristic factor model, where all factors, both

Fama–French and political, are observed.

We test the model on six recent elections. We find strong evidence in favour of our

model for four of the six events. One election has mixed results (the 2020 presidential

election). A weighting scheme was required there to generate significance. Data closer

to the election was weighted more highly than data far from the vote. Although a modi-

fication of the original model, this can be explained by political markets having greater

information content the closer we are to an election. Some justification for the approach

is from Page and Clemen (2013), which showed that the forecasting ability of prediction

markets is negatively correlated with time to expiry. We find that in general the weight-

ing scheme increases the significance of our results. This improvement is explained by the

huge increases in volumes observed on betting platforms as elections draw near. Finally,

we find no support for our model for a single event, the 2017 UK general election. We

conclude that this election was not informative for asset prices, with the weighting on

the political factor, γ, being in fact zero.
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An exploration of the factor loadings reveals some pleasing relationships. Consistent

with Hill et al. (2019) we find that domestic (or EU based) revenue is a strong explanatory

factor of political risk. Indeed, this characteristic was significant for four of the six

elections studied. This provides evidence for the hypothesis that companies with a greater

reliance on international sales are more able to diversify domestic political risk. We

also extend findings of the existing literature with the observation that the location of

company headquarters, and nationalisation risk are significantly explanatory of political

risk.
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Appendix

A Power of two-step empirical specification versus a single

regression approach

We demonstrate that using our two step approach to testing political betting significance

(outlined in section 4) has superior power than using a single larger factor model regres-

sion (equation 4.1). The latter (falsely) assumes an unchanging political probability on

the training set. The key assumption is that the political factor, although not necessar-

ily observable, has non-zero variance in some part of the training period. To show this

consider the simple univariate regression

rt = α+ β4Pt + εt t = 1, . . . , T1, T1 + 1, . . . , T2 E(εt) = σ2ε (A.1)

where rt is the return of a financial asset at time t and4Pt is the change in the probability

of the upcoming event. Assume that this is the correct model, that β 6= 0 and note that

E(4Pt) = 0. Data is available for rt for entire period t = 1, . . . , T2. 4Pt is in general not

observed for the first period t = 1, . . . , T1 but can be measured by the betting market

prices 4PBt for t = T1 + 1, . . . , T2. Consider the regression on the period where we

have data for both rt and 4Pt, (t = T1 + 1, . . . , T2). This is analogous to regressing the

estimated Fama-French residual on changes in the political markets on the testing set

only. The t-statistic for β in this regression is tβ where

tβ −→
√
T2 − T1 ×

COV (rt,4Pt)
σε.σ4P t

.

Next define

4̃Pt = I(t > T1).4PBt

which is4Pt forced erroneously to zero on the first set T = 1, . . . T1 where data is lacking.

Now consider a regression of rt on P̃t on the whole period for t = 1, . . . , T2

rt = α+ β4̃Pt + ε̃t t = T1 + 1, . . . , T2 E(ε̃t) = σ̃2ε

This is analogous to the single regression empirical approach where we jointly estimate the

Fama-French loadings with a false assumption that the political probability is unchanging

in the first period. The relevant t-statistic for β is now
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t̃β =
√
T2 ×

1
T2

∑T2
t=1 rt(4̃Ps −

1
T2

∑T2
s=1 4̃Ps)

σ̂ε̃×
√

1
T2

∑T2
t=1(4̃Pt −

1
T2

∑T2
s=1 4̃Ps)2

=
√
T2 ×

1
T2

∑T2
t=1 rt(4̃Pt −

1
T2

∑T2
s=T1+14Ps)

σ̂ε̃×
√

1
T2

∑T2
t=1(4̃Pt −

1
T2

∑T2
s=T1+14Ps)2

=
√
T2×

1
T2

∑T2
t=1 rt(4̃Pt −

(T2−T1)
T2
4̂P )

σ̂ε̃×
√

1
T2

∑T2
t=1(4̃Pt −

(T2−T1)
T2
4̂P )2

=
√
T2 ×

1
T2

∑T2
t=T1+1 rt4Pt −

T1(T2−T1)
T 2
2
4̂P

σ̂ε̃×
√

1
T2

∑T2
t=T1+14P 2

t −
2(T2−T1)2

T 2
2
4̂P

2

=
√
T2 ×

(T2−T1)
T2

ˆCOV (rt,4Pt) − T1(T2−T1)
T 2
2
4̂P

σ̂ε̃×
√

(T2−T1)
T2

ˆV AR(4Pt)− (T2−T1)2
T 2
2
4̂P

2

where we have used the fact that 4̃Pt = 0 for t ≤ T1 and

4̂P =
1

(T2 − T1)

T2∑
s=T1+1

4Ps −→ 0

σ̂ε̃ =

√√√√ 1

T2

T2∑
t=1

ˆ̃2εt −→ σε̃

ˆCOV (rt,4Pt) =
1

(T2 − T1)

T2∑
t=T1+1

rt4Pt −→ COV (rt,4Pt)

ˆV AR(4Pt) =
1

(T2 − T1)

T2∑
t=T1+1

4P 2
t −→ σ24P t .

The first result comes from the fact that E(4Pt) = 0. Thus

t̃β −→
√
T2

(T2−T1)
T2

COV (rt,4Pt)√
(T2−T1)

T2
σε̃.σ4P t

=
√
T2 − T1 ×

COV (rt,4Pt)
σε̃.σ4P t

Note that tβ̃ is very similar to tβ and differs only in the denominators σε and σε̃.

However, we have assumed that

1. β 6= 0

2. {x1, . . . , xT1} is not everywhere zero
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3. Equation (A.1) represents the true model.

However, if the model is indeed true it cannot provide a worse fit than the model

yt = α+ βx̃t + ε̃t t = 1, . . . , T2.

When assumptions 1 and 2 above hold, the fit must be strictly worse. Thus, asymptot-

ically, σε̃ > σε. The limit of the second t-statistic has smaller absolute size than that of

the first t-statistic. Thus under an alternative hypothesis β 6= 0 the second t-statistic

will never reject the null hypothesis β = 0 unless the first t-statistic does. tβ has greater

asymptotic power then t̃β.

If we are testing the hypothesis β 6= 0 in a univariate regression and we lack data for

the explanatory variable for some part of a sample set, then a higher power test is provided

by regressing on only the sub-sample where data is known for both the explanatory and

dependent variables rather than regressing on the whole set and forcing the dependent

variable to zero where there are no observations. This is exactly analogous to showing

that jointly estimating the Fama-French residuals along with the political component,

whilst forcing the political factor to be zero, has lower power than the two step approach

we employ.
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B Modified Jα tests of Pesaran and Yamagata

The Jα test of Pesaran and Yamagata (2012) is summarised as follows. Consider the

following factor model in the form of a panel data regression and stacked by cross-

sectional regressions

yt = α+Bf t + ut.

yi are the individual stock returns, and f t are K known factors. B is an N ×K matrix

of factor loadings. The Wald statistic for α = 0 can be estimated as

Ŵα =

N∑
i=1

t2α,i

where tα,i is the t-ratio of the intercept of the OLS regression of (yt)i on intercept and

f t. In the case of cross sectionally independent errors it can be shown that under various

regularity conditions

E(Wα)→ νN

ν − 2

VAR(Wα)→ 2N(ν − 1)

(ν − 4)

(
ν

ν − 2

)2

as N → ∞, T → ∞ and N/T → ∞ where ν = T − K − 1 > 4. The following is an

exactly standardised statistic

Ĵα,1 =
N−1/2

∑N
i=1

(
t2α,i − ν

ν−2

)
(

ν
ν−2

)√
2(ν−1)
(ν−4)

and thus is distributed as N(0, 1) asymptotically under the null. The result holds in the

case of non-normal errors. A second statistic Ĵα,2 is derived that is adjusted for correl-

ation of the individual t-statistics when the errors are cross-sectionally correlated. The

adjustment is based on a consistent estimate of the correlation matrix of the disturbances

ut. Define

ˆ̄
ρ2 =

2

N(N − 1)

N∑
i=2

i−1∑
j=1

ρ̂2ijI(νρ̂2ij ≥ θN )
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where ρ̂ij is the sample correlation of the regression residuals ût and θN is some threshold

value. The latter is chosen so that the number of non-zero correlations decline steadily

with N . We will follow the protocol set out in Pesaran and Yamagata (2012) with
√
θN = Φ−1(1− pN

2 ) and pN = 0.1. The adjusted statistic is now

Ĵα,2 = Ĵα,1 ×
1√[

1 + (N − 1)
ˆ̄
ρ2
] =

N−1/2
∑N

i=1

(
t2α,i − ν

ν−2

)
(

ν
ν−2

)√
2(ν−1)
(ν−4)

[
1 + (N − 1)

ˆ̄
ρ2
] .

Pesaran and Yamagata (2012) show that Ĵα,2 is asymptotically distributed as N(0, 1)

under various stricter regularity conditions and weak cross sectional correlation. They

also show, via Monte Carlo simulation, small deviations from correct sizes for sample

sizes similar to those used in this paper. Of course |Ĵα,2| < |Ĵα,1| since it has lower

variance due to the correlation adjustment of the t-statistics. Ĵα,2 will never reject the

null when Ĵα,1 does not. We will not consider the first statistic at all as we do expect

that errors will indeed have some correlation.

The test generalises simply to the slope parameter. We thus consider

Ĵγ,2 =
N−1/2

∑N
i=1

(
t2γ,i − ν

ν−2

)
(

ν
ν−2

)√
2(ν−1)
(ν−4)

[
1 + (N − 1)

ˆ̄
ρ2
]

where tγ,i is the t-statistic for slope in the regression of the Fama–French residual ε̂it, on

intercept and changes in the betting market, 4PBt. This is the statistic we evaluate in

the results section.
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C Event specifications

Table 1: Specifications for each political event.

Event Bet Portfolios Factors StartTest EndTest1

2014 Scottish

independence

referendum

No Stocks listed on LSE in

Q2 2014

Fama/French

European

30-Jul-2014 18-Sep-2014

Brexit Yes Stocks listed on LSE in

Q1 2016

Fama/French

European

21-Feb-2016 23-Jun-2016

European stocks with

> 25% revenues from UK

in 2015

Fama/French

European

2016 US presidential

Election

Trump S&P500 in Q2 2016 Fama/French

North American

27-Jul-2016 8-Nov-2016

Stocks domiciled in

Mexico in Q2 2016

Fama/French

North American

2017 UK General

Election

Conservative

Majority

Stocks listed on LSE in

Q1 2017

Fama/French

European

20-Apr-2017 8-Jun-2017

2019 UK General

Election

Conservative

Majority

Stocks listed on LSE in

Q3 2019

Fama/French

European

29-Oct-2019 12-Dec-2019

2020 US presidential

Election

Biden S&P500 in Q2 2020 Fama/French

North American

6-Jun-2020 3-Nov-2020

1The test period ends on the day of the vote. The result is generally known one day later.
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D Results tables

Table 2: Regression of Fama–French factor returns on 4PBt for political events in the
testing window.

European Factors American Factors

Slope Error tStat pValue Slope Error tStat pValue

2014 Scottish independence ref. 2016 US election

MktRF 1.15 3.24 0.36 0.722 -5.24 4.76 -1.10 0.272

SMB -0.21 1.06 -0.20 0.840 -2.71∗ 1.51 -1.80 0.072

HML -0.67 1.31 -0.51 0.608 2.07 2.41 0.86 0.390

RMW 0.89 1.17 0.76 0.445 1.37 1.36 1.01 0.313

CMA -0.70 0.89 -0.79 0.431 2.98∗∗ 1.39 2.14 0.033

T = 36 T = 74

2016 Brexit referendum 2020 US election

MktRF -16.28∗∗∗ 5.00 -3.26 0.001 10.69 7.51 1.42 0.155

SMB 3.16∗ 1.90 1.66 0.097 -0.69 4.93 -0.14 0.889

HML -0.83 1.81 -0.46 0.646 -2.11 7.51 -0.28 0.779

RMW 0.57 1.47 0.39 0.698 -0.78 2.89 -0.27 0.788

CMA 0.34 0.62 0.54 0.588 1.76 3.92 0.45 0.654

T = 88 T = 106

2017 UK GE

MktRF 0.23 4.92 0.05 0.963

SMB 0.35 1.88 0.19 0.851

HML 5.34∗∗ 2.15 2.48 0.013

RMW -3.41∗ 1.77 -1.93 0.053

CMA 2.70∗ 1.39 1.94 0.053

T = 35

2019 UK GE

MktRF -0.30 1.66 -0.18 0.856

SMB 0.91 0.98 0.93 0.353

HML -1.30 1.25 -1.04 0.297

RMW 0.22 0.60 0.36 0.716

CMA 0.64 0.74 0.86 0.390

T = 32

Heteroskedastic robust errors are used.
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Table 3: Regression of Fama–French factor returns on4PBt for US presidential elections
from the month prior to election day.

2016 US election 2020 US election

Slope Error tStat pValue Slope Error tStat pValue

MktRF -12.03∗∗ (5.92) -2.03 0.042 23.42∗∗ (10.54) 2.22 0.026

SMB -4.89∗∗ (2.22) -2.20 0.028 2.18 (7.34) 0.30 0.766

HML 4.45 (2.96) 1.50 0.133 18.27∗ (11.02) 1.66 0.097

RMW 1.82 (1.60) 1.14 0.254 3.12 (4.83) 0.65 0.517

CMA 5.09∗∗∗ (1.61) 3.16 0.002 13.62∗∗ (5.60) 2.43 0.015

T = 22 T = 22

Heteroskedastic robust errors are used.
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Table 4: Results of the significance tests for γ.

Univariate regressionsa Individual stock regressions

K γ̂ σ̂γ̂ t p R2 pQ
b pBPLM

c pELM
d ¯̂γ t̄

√
t̄2 ˆJγ,2 PJγ,2 pQ

e pLLn
f

2014 Scottish independence referendum
0 0.025 (0.036) 0.70 0.483 0.016 0.234 0.575 0.138 0.025 0.29 1.17 2.01∗∗∗ 0.022 1.000 0.898
1 0.017 (0.016) 1.06 0.290 0.028 0.676 0.543 0.179 0.017 0.22 1.22 3.33∗∗∗ <0.001 1.000 0.193
5 0.018 (0.016) 1.08 0.282 0.032 0.798 0.276 0.354 0.018 0.21 1.22 3.37∗∗∗ <0.001 1.000 0.426

N = 188, T = 36

2016 Brexit referendum - LSE stocks
0 -0.147∗∗∗ (0.042) -3.51 <0.001 0.171 0.848 0.946 0.006∗∗∗ -0.147 -1.92 2.28 15.66∗∗∗ <0.001 1.000 0.014∗∗

1 -0.028∗ (0.016) -1.70 0.089 0.025 0.775 0.600 0.192 -0.028 -0.30 1.39 6.02∗∗∗ <0.001 1.000 0.970
5 -0.026 (0.016) -1.63 0.103 0.021 0.795 0.588 0.328 -0.026 -0.27 1.34 5.88∗∗∗ <0.001 1.000 0.705

N = 219, T = 85

2016 Brexit referendum - European exporters to UK
0 -0.133∗∗∗ (0.041) -3.26 0.001 0.121 0.755 0.773 0.071∗ -0.133 -1.64 1.89 9.06∗∗∗ <0.001 1.000 0.723
1 0.010 (0.021) 0.48 0.631 0.002 0.186 0.251 0.487 0.010 0.15 0.91 -1.16 0.878 1.000 0.909
5 0.014 (0.020) 0.71 0.479 0.004 0.112 0.341 0.593 0.014 0.18 0.94 -0.85 0.802 1.000 0.843

N = 102, T = 87

2016 US presidential election - S&P500 constituents
0 -0.041 (0.049) -0.82 0.413 0.016 0.031∗∗ 0.575 0.136 -0.040 -0.52 1.07 0.52 0.300 1.000 0.536
1 0.009 (0.007) 1.51 0.132 0.021 0.414 0.092∗ 0.772 0.011 0.17 1.06 0.49 0.313 1.000 0.531
5 0.005 (0.006) 0.92 0.356 0.006 0.558 0.575 0.410 0.006 0.04 1.03 0.32 0.376 1.000 0.557

N = 488, T = 74

2016 US presidential election - Mexican stocks
0 -0.180∗∗∗ (0.047) -3.86 <0.001 0.229 0.569 0.311 0.969 -0.180 -2.05 2.35 14.91∗∗∗ <0.001 0.520 0.644
1 -0.156∗∗∗ (0.029) -5.32 <0.001 0.270 0.970 0.749 0.895 -0.155 -1.85 2.20 15.66∗∗∗ <0.001 0.518 0.795
5 -0.158∗∗∗ (0.030) -5.24 <0.001 0.281 0.906 0.603 0.985 -0.158 -1.88 2.22 16.33∗∗∗ <0.001 0.421 0.675

N = 51, T = 75

2017 UK general election - LSE stocks
0 -0.008 (0.030) -0.28 0.781 0.001 0.606 0.910 0.743 -0.008 -0.07 0.99 -0.66 0.745 1.000 0.661
1 -0.012 (0.039) -0.31 0.754 0.004 0.151 0.194 0.595 -0.012 -0.13 1.00 -0.46 0.677 1.000 0.924
5 -0.011 (0.040) -0.27 0.789 0.003 0.196 0.211 0.679 -0.011 -0.07 0.99 -0.63 0.735 1.000 0.438

N = 215, T = 34

2019 UK general election - LSE stocks
0 0.014 (0.019) 0.72 0.472 0.007 0.648 0.527 0.821 0.014 0.344 1.28 3.72∗∗∗ <0.001 1.000 0.945
1 0.014 (0.010) 1.30 0.193 0.019 0.772 0.338 0.043∗∗ 0.014 0.36 1.37 6.86∗∗∗ <0.001 1.000 0.947
5 0.014 (0.010) 1.35 0.178 0.018 0.984 0.414 0.047∗∗ 0.014 0.38 1.47 9.18∗∗∗ <0.001 1.000 0.871

N = 243, T = 33

2020 US presidential election - S&P500 constituents
0 0.083 (0.092) 0.79 0.432 0.004 0.598 0.509 0.210 0.074 0.49 0.86 -0.43 0.672 1.000 0.860
1 0.004 (0.049) -0.11 0.911 0.000 0.194 0.429 0.368 -0.005 0.01 0.84 -0.81 0.417 1.000 0.396
5 0.006 (0.022) -0.15 0.884 0.000 0.868 0.521 0.114 -0.003 -0.01 0.88 -1.13 0.260 1.000 0.330

N = 487, T = 105

a Heteroskedastic robust errors are used for the univariate portfolio regression e Multivariate Ljung-Box serial correlation test p-value
b Ljung-Box serial correlation test p-value f Ling-Li multivariate heteroskedasticty test p-value
c Breusch-Pagan heteroskedasticity test p-value
d Engle ARCH test p-value
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Table 5: Results for weighted regressions, with the weight increasing by 5% each week.

Univariate regressionsa Individual stock regressions

K γ̂ σ̂γ̂ t p R2 pQ
b pBPLM

c pELM
d ¯̂γ t̄

√
t̄2 ˆJγ,2 PJγ,2 pQ

e pLLn
f

2014 Scottish independence referendum
0 0.023 (0.030) 0.78 0.438 0.017 0.234 0.575 0.142 0.023 0.30 1.27 3.60∗∗∗ <0.001 1.000 0.768
1 0.014 (0.017) 0.82 0.412 0.019 0.693 0.543 0.143 0.014 0.19 1.31 5.23∗∗∗ <0.001 1.000 0.580
5 0.014 (0.016) 0.90 0.366 0.023 0.824 0.276 0.347 0.014 0.19 1.32 5.34∗∗∗ <0.001 1.000 0.512

N = 187, T = 37

2016 Brexit referendum - LSE stocks
0 -0.170∗∗∗ (0.029) -5.93 <0.001 0.289 0.666 0.946 0.017 -0.170 -2.88 3.34 32.62∗∗∗ <0.001 1.000 0.286
1 -0.030∗∗ (0.015) -1.98 0.048 0.044 0.805 0.600 0.199 -0.030 -0.45 1.85 15.49∗∗∗ <0.001 1.000 0.026
5 -0.028∗ (0.015) -1.84 0.065 0.037 0.823 0.588 0.338 -0.028 -0.41 1.79 15.73∗∗∗ <0.001 1.000 0.554

N = 218, T = 85

2016 Brexit referendum - European exporters to UK
0 -0.156∗∗∗ (0.030) -5.15 <0.001 0.232 0.906 0.773 0.119 -0.156 -2.53 2.89 24.00∗∗∗ <0.001 1.000 0.139
1 0.014 (0.018) 0.79 0.430 0.005 0.199 0.251 0.457 0.014 0.27 1.32 4.30∗∗∗ <0.001 1.000 0.106
5 0.019 (0.018) 1.02 0.309 0.010 0.119 0.341 0.550 0.019 0.32 1.35 4.64∗∗∗ <0.001 1.000 0.403

N = 101, T = 87

2016 US presidential election - S&P500 constituents
0 -0.080∗∗ (0.036) -2.23 0.026 0.068 0.032 0.587 0.061 -0.080 -1.09 1.61 5.39∗∗∗ <0.001 1.000 0.954
1 0.008 (0.007) 1.10 0.273 0.013 0.338 0.398 0.764 0.008 0.16 1.30 4.22∗∗∗ <0.001 1.000 0.372
5 0.004 (0.006) 0.62 0.537 0.003 0.569 0.720 0.822 0.004 0.04 1.29 4.31∗∗∗ <0.001 1.000 0.223

N = 488, T = 74

2016 US presidential election - Mexican stocks
0 -0.215∗∗∗ (0.036) -5.91 <0.001 0.320 0.569 0.311 0.821 -0.215 -2.74 3.06 24.71∗∗∗ <0.001 0.501 0.736
1 -0.172∗∗∗ (0.028) -6.11 <0.001 0.333 0.966 0.751 0.813 -0.172 -2.30 2.69 23.65∗∗∗ <0.001 0.499 0.843
5 -0.175∗∗∗ (0.028) -6.27 <0.001 0.345 0.897 0.601 0.893 -0.175 -2.34 2.73 24.82∗∗∗ <0.001 0.441 0.736

N = 50, T = 75

2017 UK general election - LSE stocks
0 -0.012 (0.037) -0.32 0.747 0.002 0.586 0.910 0.749 -0.012 -0.11 1.06 0.48 0.316 1.000 0.194
1 -0.009 (0.044) -0.20 0.842 0.004 0.157 0.194 0.601 -0.009 -0.11 1.06 0.46 0.325 1.000 0.944
5 -0.007 (0.044) -0.15 0.882 0.003 0.205 0.211 0.689 -0.007 -0.04 1.06 0.45 0.328 1.000 0.893

N = 214, T = 34

2019 UK general election - LSE stocks
0 0.016 (0.025) 0.65 0.518 0.011 0.679 0.527 0.874 0.016 0.41 1.28 3.67∗∗∗ <0.001 1.000 0.748
1 0.014 (0.017) 0.81 0.418 0.019 0.784 0.338 0.042 0.014 0.39 1.37 6.70∗∗∗ <0.001 1.000 0.336
5 0.015 (0.019) 0.78 0.433 0.019 0.970 0.414 0.045 0.015 0.40 1.47 9.17∗∗∗ <0.001 1.000 0.979

N = 242, T = 33

2020 US presidential election - S&P500 constituents
0 0.200∗∗∗ (0.090) 2.24 0.025 0.045 0.595 0.493 0.228 0.200 1.41 1.71 3.41∗∗∗ <0.001 1.000 0.390
1 0.026 (0.046) 0.58 0.561 0.003 0.170 0.658 0.488 0.026 0.21 1.12 0.84 0.201 1.000 0.840
5 0.003 (0.019) 0.15 0.881 0.000 0.947 0.202 0.108 0.003 0.01 1.19 2.93∗∗∗ 0.002 1.000 0.321

N = 487, T = 105

a Equally weight portfolio regression e Multivariate Ljung-Box serial correlation test p-value
b Ljung-Box serial correlation test p-value f Ling-Li multivariate heteroskedasticty test p-value
c Breusch-Pagan heteroskedasticity test p-value
d Engle ARCH test p-value
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Table 6: Regressions of factor loadings γ against stock characteristics for different events.

Dependent Variable Estimate Error tStat pValue

γ

2014 Scottish independence referendum

Intercept -0.030∗∗ 0.012 -2.56 0.011

% 2013 UK revenue 0.080∗∗∗ 0.018 4.54 <0.001

I(HQ in Scotland) 0.073∗∗ 0.036 2.03 0.044

N = 158, R2 = 0.136

2016 Brexit referendum - UK Stocks

Intercept 0.036∗∗ 0.014 2.50 0.013

% 2015 developed Europe revenue -0.098∗∗∗ 0.021 -4.78 <0.001

N = 183, R2 = 0.112

2016 Brexit referendum - EU Exporters

Intercept -0.000 0.023 0.00 0.999

% 2015 UK revenue 0.044 0.050 0.87 0.385

N = 101, R2 = 0.008

2016 US presidential election - S&P500

Intercept 0.058∗∗∗ 0.013 4.50 <0.001

% 2015 US revenue -0.075∗∗∗ 0.017 -4.41 <0.001

N = 461, R2 = 0.041

2016 US presidential election - Mexican stocks

Intercept -0.094 0.063 -1.50 0.156

% 2015 US revenue -0.199 0.174 -1.15 0.271

N = 16, R2 = 0.086

2019 UK general election

Intercept -0.041∗ 0.021 -1.97 0.051

% 2016 UK revenue 0.111∗∗∗ 0.033 3.41 <0.001

I(Corbyn to nationalise) 0.004 0.050 0.07 0.944

N = 202, R2 = 0.071

20206 US presidential election - S&P500

Intercept -0.030 0.019 -1.56 0.120

% 2015 US revenue 0.033 0.025 1.32 0.187

N = 404, R2 = 0.002
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